JOURNAL OF SURGICAL RESEARCH 49, 228-232 (1990)

Clare

Increased Prostacyclin and Thromboxane A₂ Formation in Human Varicose Veins¹

DANIEL F. HAYNES, M.D.,* MORRIS D. KERSTEIN, M.D.,* M. PARKER ROBERTS, M.D.,* WILLIAM H. BELL III, M.D.,* DANIEL S. RUSH, M.D.,* PHILIP J. KADOWITZ, PH.D.,*'† AND DENNIS B. MCNAMARA, PH.D.*'†

Departments of *Surgery and †Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana 70112

Submitted for publication November 18, 1988

Increased urinary metabolites of the antiaggregatory vasodilator prostacyclin (PGI₂) and the proaggregatory vasoconstrictor thromboxane A2 (TXA2) have been reported in deep vein thrombosis; however, the tissue(s) of origin is uncertain. Because little is known about the formation of PGI₂ or TXA₂ from its common precursor, prostaglandin (PG) endoperoxide H₂ (PGH₂), by varicose veins, we determined the formation of 6-keto-PGF_{1a} (the stable metabolite of PGI₂), TXB₂ (the stable metabolite of TXA₂), and PGE₂. Segments of normal saphenous vein and varicose vein (nine and six patients, respectively) were incubated with $10 \mu M [^{14}C]PGH_2$ for 2 min at 37°C; products were separated by thin-layer chromatography. Surface area and mass of normal and varicose vascular segments were 19.5 ± 0.8 versus 18.8 ± 0.6 mm² and 11.6 ± 1.4 versus 10.7 ± 0.7 mg, respectively. Formation of 6-keto-PGF_{1 α} and TXB₂ by the segments of varicose vein was significantly increased over that of normal vein: 157 ± 14 versus 243 ± 17 pmole of 6-keto-PGF_{1a} (P < 0.005) and 22 \pm 3 versus 35 \pm 5 pmole of TXB₂ (P < 0.01). The formation of PGE₂ by segments of varicose vein was not significantly different from that of normal vein (201 \pm 9 vs 219 \pm 11, respectively). Deoxyribonucleic acid (DNA) content of normal and varicose vein was 1.69 ± 0.12 and 1.51 ± 0.13 mg per gram of tissue, respectively. The data suggest that the increased PGI_2 formation may reflect increased activity or content of PGI₂ synthase. The increase in TXA₂ formation may reflect increased productivity or an increased presence of residual platelets or microemboli. © 1990 Academic Press, Inc.

INTRODUCTION

Arachidonic acid, a 20-carbon polyunsaturated fatty acid, is a constituent of the phospholipid component of mammalian cell membranes. Release of arachidonic acid from the phospholipid pool is catalyzed by phospholipase and can result from a number of interventions including receptor-mediated events, such as stimulation by bradykinin or histamine, and non-receptor-mediated events, such as tissue injury. Prostaglandin (PG) H synthase is an enzyme found in many cell types that catalyzes the formation of PGG₂ from arachidonic acid (cyclooxygenase step), as well as the subsequent conversion of PGG₂ to PGH_2 (peroxidase step). PGH_2 is a pivotal substance that can be converted to prostacyclin (PGI₂), PGE₂, PGD₂, $PGF_{2\alpha}$, and thromboxane (TXA₂). The metabolism of PGH₂ is tissue specific; however, all the metabolites of PGH₂ are biologically active. Vascular tissue, both endothelium and smooth muscle, form PGI₂ and have been reported to form TXA₂ in small amounts, whereas the platelet principally converts PGH₂ only to TXA₂. Vascular formation of PGI₂ and platelet-generated TXA₂ are thought to be important modulators of thrombogenesis, because PGI_2 is an inhibitor of platelet adhesion to the blood vessel as well as platelet aggregation, whereas TXA₂ induces platelet aggregation [20]. PGE₂ has been reported to produce vasodilation in the systemic vascular bed [15] and to modulate platelet aggregation [24]. We have previously demonstrated the presence of an active GSH-dependent PGH₂-to-PGE₂ isomerase in human saphenous vein [16].

The human saphenous vein is used widely as an autologous graft in vascular surgery. It is used commonly in revascularization of the coronary arteries and lower limbs and for repair of traumatic arterial and venous injuries elsewhere in the body. Considerable research has focused on the physiologic mechanisms of graft patency and on the role of the eicosanoid PGI₂ [3, 5–7, 16, 22]. Because PGI₂ is produced by both intimal and subintimal regions of the vascular wall [17, 18, 26] and functions as a local vasodilator and inhibitor of platelet aggregation, it has been postulated that an increased ratio of PGI₂ to the proaggregatory compound TXA₂ prolongs the patency of venous grafts [6].

Recent data have shown that PGI₂ formation is augmented by increased intraluminal pressure and pulsatility

¹ Presented at the Tripartite University Surgeons Meeting in Bristol, England, July 7, 1988.

HAYNES ET AL.: VARICOSE VEIN PROSTACYCLIN/THROMBOXANE A2

TABLE 1

Donor Source of Saphenous Vein (Specimens
----------------------------------	-----------

Normal saphenous veins	nª	Varicose saphenous veins	ı
Femoral-popliteal		Patients undergoing varicose vein	
bypass graft	4	stripping procedures	6
Coronary artery			
bypass graft	3		
Arterial reconstruction			
for trauma	1		
Vein patch			
angioplasty	1		

n = number of donors.

of flow [5–7], as well as stretching of the endothelial cell layer [26]. Trauma to the vessel wall also causes PGI_2 release [14]. Moreover, increased urinary metabolites of PGI_2 and TXA_2 , as well as increased synthesis of these two substances in hand veins, have been reported in patients with deep venous thrombosis [23, 27]; the tissue responsible for increased production of these substances is unknown. Thus, the literature suggests the hypothesis that there may be alterations in the metabolism of PGH_2 by vascular tissue exposed to increased extraluminal pressure. The purpose of this study was to investigate the differences in eicosanoid production between normal saphenous veins and varicose saphenous veins, which are subjected to both increased pressure and stasis of blood flow.

METHODS

Normal saphenous veins were obtained from three sources: patients undergoing coronary artery bypass grafting; patients undergoing femoral-popliteal or femoral-tibial artery bypass using reversed or *in situ* saphenous vein; and patients in whom the saphenous vein was used as a vein patch or interposition graft in repair of vascular trauma (Table 1). In cardiac and trauma patients, the harvested vein was kept in iced 0.1 M potassium phosphate buffer, pH 7.4 until completion of anastomosis (15 to 60 min); leftover vein was then placed in 0.1 Mpotassium phosphate buffer, pH 7.4, and frozen at -40° C for later analysis. In lower-extremity bypass patients, sections of vein were carefully dissected at the start of the procedure and then frozen in buffer at -40° C for later analysis.

Varicose saphenous veins were obtained from patients undergoing vein stripping for removal of painful or unsightly varicosities of the legs. Segments of varicose saphenous vein were dissected from the lower leg at the level of the ankle and frozen in buffer for later analysis; the remainder of the vein removal was performed using conventional stripping wires.

To cut precise rings, the blood vessels were laid on a movable stage beneath a razor blade guillotine and cut to provide an 18- to 20-mm² intimal surface area. The segments were placed in phosphate-buffer solution and warmed to 37°C in a water bath for 2 min. The warmed segments and buffer were then added to an incubation tube containing $[^{14}C]PGH_2$, which had been previously blown to dryness under a stream of N_2 and incubated for 2 min at 37°C while being stirred with a magnetic stir bar. The radiolabeled PGH₂ was prepared from radiolabeled arachidonic acid in our laboratory using a protocol published previously [19]. The reaction was stopped and remaining substrate and radiolabeled products were then extracted by addition of ethyl acetate:methanol:0.2 M citric acid, pH 2 (15:2:1). The reaction tubes were vortexed and centrifuged at 12,000g for 30 sec. The eicosanoids in the organic upper layer were separated by thin-layer chromatography (TLC). Products were identified by comparison with the migration of authentic standards, which were located by iodination of the chromatography plates. Radioactivity on the TLC plates was monitored by radiochromatogram scanners mated to Commodore 64 computers for data storage, analysis, and calculation. PGI₂ was identified through the formation of its spontaneous breakdown product, 6-keto-PGF_{1a}; TXA₂ was identified as its breakdown product TXB₂. Duplicate assays were performed on each specimen. These procedures are similar to those published previously [18].

In another experiment, segments of vein were prepared from the area immediately adjacent to the segments that were incubated. These segments were analyzed for deoxyribonucleic acid (DNA) content using the method described by Fiszer-Szafarz *et al.* [10].

PG formation is expressed as the mean (\pm standard error of the mean) picomoles of stable PG breakdown product formed per 2 min incubation of PGH₂. For statistical analysis, *P* values were calculated using Student's *t* test, with *P* < 0.05 considered statistically significant.

RESULTS

Segments of both normal and varicose saphenous veins were prepared as described in the Methods to ensure minimal differences between them with respect to mass and

TABLE 2

Surface Area and Mass of Human Saphenous Vein Segments

Saphenous vein	n ^e	Surface area (mm ²)	Mass (mg)
Normal	9	19.5 ± 0.8	11.6 ± 1.4
Varicose	6	18.8 ± 0.6	10.7 ± 0.7

^a n = number of donors.

surface area. The data presented in Table 2 indicate that the segments prepared from normal and varicose veins did not differ significantly from each other with respect to either of these values.

When segments of either normal or varicose vein were incubated with PGH₂, the immediate precursor of both PGI₂ and TXA₂, both normal and varicose venous segments formed 6-keto-PGF_{1 α} and TXB₂ (the stable hydrolysis products of chemically unstable PGI2 and TXA2, respectively), as well as PGE2 (Table 3). The quantity of TXB₂ produced by normal saphenous vein segments was close to the limit of detection of the method used (i.e., 10 pmole). Statistically significant differences between the normal and varicose venous segments were observed, however, with the varicose segments producing 55% more 6-keto-PGF_{1a} (P < 0.002) and 59% more TXB₂ (P < 0.03) than the normal segments. When these data were expressed as the ratio 6-keto-PGF $_{1\alpha}$ /TXB₂, little difference was noted between the normal and varicose venous segments. No statistically significant difference was found in PGE₂ formation between normal and varicose venous segments.

The DNA content of the venous segments prepared from the area immediately adjacent to the segments, which were used to study the formation of 6-keto-PGF_{1α} and TXB₂, was determined. The data in Table 4 indicate no statistically significant difference in the DNA content between segments prepared from normal or varicose human saphenous vein.

DISCUSSION

The data indicate that segments of varicose saphenous veins produce significantly more PGI_2 and TXA_2 from PGH_2 in vitro than segments of normal saphenous veins, whereas the formation of PGE_2 is similar in varicose and normal vein tissue. The vascular segments were prepared in a manner to minimize physical differences between normal and varicose vascular segments, and the data in-

TABLE 3

Prostacyclin and Thromboxane A₃ Formation from PGH₂ by Segments of Normal and Varicose Human Saphenous Vein

Saphenous vein	n	6-Keto-PGF10	TXB ₂	6-Keto-PGF₁∝/ TXB₂	PGE ₂
Normal	9	157 ± 14	22 ± 3	7.1	219 ± 11
Varicose	6	243 ± 17*	35 ± 5**	6.9	201 ± 9

Note. Conditions of incubation: 0.1 M potassium phosphate, pH 7.4; 10 μ M PGH₂; 37°C; 2 min. Data are expressed as picomoles of product formed and are means ± SEM of duplicate incubations of vascular segments prepared from each donor; n = number of donors.

* P < 0.005 compared with normal.

** P < 0.01 compared with normal.</p>

ΓА	BL	Æ	4
----	----	---	---

Deoxyribonucleic Acid (DNA) Content of Normal and Varicose Human Saphenous Veins

Saphenous vein	n	DNA (mg/g tissue)
Normal	8	1.69 ± 0.12
Varicose	5	1.51 ± 0.13

Note. Data are expressed as means \pm SEM of determinations much on vascular segments prepared as described under Methods; $n = \max_{n \in \mathbb{N}} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^$

dicate no significant difference between the segments with in this study, based on mass or surface area. It is unlikely that differences in age or sex of the patient are involved because it has been reported that neither 6-keto-ECH nor TXB₂ formation by segments of hand vein from the tients with deep vein thrombosis varied with age of with [14]. The quantity of 6-keto-PGF_{1a} produced by more vein in this study (157 ± 14 pmole) is similar to the ments of similar mass (165 ± 9 pmole) in an earlier with (1); the quantity of 6-keto-PGF_{1a} produced by very vein in this study (243 ± 17 pmole) is greater the observed previously for normal human aorta (2000 the pmole) [1].

Possible mechanisms that may underlie the increase and PGH₂ metabolism include increased specific screep of PGI2 synthase; increased amount of enzyme per call and de novo synthesis of PGI2 synthase); and hyperines sulting in an increased number of cells contribut the metabolism of PGH₂. We therefore determine DNA content of segments of normal and varices nous veins. No significant difference was forme in the DNA content between the segments used in this start. indicating no significant difference in the number between normal and varicose vascular segments data suggest that the observed increase in the of 6-keto-PGF1a may reflect increased activity of PGI2 synthase, rather than hyperplasia restriction increased number of cells contributing to the in-12 . of 6-keto-PGF_{1 α}. The data, however, do not gradient 30 possibility of differences in cell type, with the . نخص metabolism of PGH2 reflecting an altered profester that metabolize PGH₂ between normal and variable cular segments.

With respect to TXA_2 formation, the quantity formed (22 ± 3 pmole) by normal saphenous variant and close to the limit of detection of the method pmole). In an earlier study, we found that normal nous vein did not produce detectable amount [1]. Thus, the normal saphenous vein produce minimal quantity of detectable TXA_2 . The tistically significant increase in TXB_2 formation significant increase in DNA content is constant. the presence of a small quantity of platelets or microaggregates in the segments of varicose vein. This possibility, however, cannot be distinguished by the present data from an increase in either specific activity or quantity of TXA_2 synthase as suggested for PGI₂ synthase, because the platelet does not contain DNA.

Although an increase in the formation of PGI2 and TXA₂ by varicose saphenous veins was found, the ratio of PGI2 to TXA2 (6-keto-PGF1a/TXB2) was similar between normal and varicose vascular segments. These data indicate no imbalance in the ratio associated with varicose veins. This observation is similar to that reported by Saldeen et al. [23] in that the increased synthesis of 6-keto- $PGF_{1\alpha}$ and TXB_2 by segments of hand veins from patients with deep venous thrombosis on gentle shaking in a water bath was not associated with an altered 6-keto-PGF_{1 α}/ TXB_2 ratio. Because PGI_2 has a half-life of approximately 4 to 5 min, whereas TXA_2 has a half-life of approximately 30 sec, the functional significance of the increase in PGI₂ formation of an average of 86 pmole accompanied by an increase of an average of 13 pmole in TXA_2 by the same vascular segment is uncertain. Although TXA₂ has been suggested to be more potent on a molar basis than PGI_2 , no direct evidence exists [2].

The relationship between varicose veins and increased intraluminal pressure is well established. A contributing anatomic defect is the incompetence of venous valves; whether this is the primary cause of varicose change or rather a result of the postphlebitic syndrome and dilatation is uncertain [8]. Histologically, varicose veins demonstrate variations in wall thickness, with areas of elastic tissue degeneration and areas of smooth muscle hypertrophy [21]. Areas of distension and aneurysmal outpouching are common. These changes combine with valvular insufficiency to allow pooling of blood in the veins, which, in turn, can promote thrombosis, edema, and venous ulceration. PGI2 acts to inhibit thrombosis and has been postulated to exert in vivo a limitation on clot propagation, confining the clot to the site of vascular injury [13]. Normal veins placed into an arterial environment increased PGI₂ formation [7]. These arterialized veins roughly double their basal PGI₂ production, such that it approximates the basal level of native artery. Our data indicate that the PGH₂ metabolism of varicose vein segments is altered under these conditions of increased risk of thrombosis in a manner that results in increased production of both PGI₂ and TXA₂. PGI₂ formation by varicose vein increased to levels greater than that observed previously in normal human aorta [1]. Whether this increase in PGI_2 formation is a result of endothelial stretching and increased pressure or a response to some other signal is unknown.

With respect to endothelial PGI_2 formation, PGI_2 is formed by endothelial as well as vascular smooth muscle cells [17, 18]. A gradient in cyclooxygenase activity in which arachidonic acid metabolism is greatest in the intima (endothelial) compared with subintima (smooth muscle) has been reported; however, there does not appear to be such a gradient in PGI_2 synthase activity [9, 18]. As such, vascular production of PGH_2 from arachidonic acid is more dependent on an intact endothelium than is the conversion of PGH_2 to PGI_2 [18]. Thus, in this study, the role of the endothelium in formation of PGI_2 by normal versus varicose segments is not addressed, because PGH_2 , not arachidonic acid, was used as substrate.

 PGI_2 has been shown by other investigators to have different effects on the arterial and venous systems [11, 25, 28]. While PGI_2 has been reported to be a potent arterial vasodilator, it has been reported to be without effect in the bovine intrapulmonary venous rings [12] and to produce a contractile response in both normal and varicose human saphenous vein strips [25]. If PGI_2 produces a venoconstrictor response *in vivo* in the varicose vein, this would be potentially beneficial, because a decrease in luminal diameter could augment venous return.

More recently, Biagi *et al.* reported that human varicose saphenous vein produced less PGI_2 and more TXA_2 and PGE_2 than normal saphenous vein [4]. As discussed above, we have previously demonstrated a gradient in PGI_2 formation from arachidonic acid but not PGH_2 by vascular segments [18]. The differences between the data of Biagi *et al.* and the present data suggest that the endothelial layer of varicose saphenous vein may be damaged, resulting in decreased arachidonic acid conversion to PGI_2 ; however, further work is required to more fully elucidate this point.

In conclusion, vascular segments prepared from varicose human saphenous vein produce increased amounts of PGI_2 and TXA_2 . The relationship between venous hypertension associated with varicose veins and increased formation of these eicosanoids requires further investigation. In addition, the physiologic significance of the increased formation of PGI_2 and TXA_2 with respect to contractile response of the vein and platelet aggregation remains to be determined.

ACKNOWLEDGMENTS

The authors gratefully acknowledge Gae O. Decker-Garrad and Janice Ignarro for editorial assistance and Kat Goodwin for manuscript preparation.

This work was supported by NIH Grants HL-15580 and HL-18070 and grants-in-aid from the American Heart Association and the American Heart Association—Louisiana, Inc.

REFERENCES

- Akers, D. L., Kerstein, M. D., Rush, D. S., Bellan, J. A., Haynes, D. F., Kadowitz, P. J., and McNamara, D. B. Prostacyclin and thromboxane A₂ formation by atherosclerotic carotid artery: Comparison with normal aorta, saphenous vein and platelets. J. Vasc. Surg. 8: 520, 1988.
- Alley, A. I., and Horrobin, D. F. Thromboxane A₂ in blood vessel walls and its physiological significance: Relevance to thrombosis and hypertension. *Prostaglandins Med.* 4: 431, 1980.