Galactose Clearance as an Estimate of Effective Hepatic Blood Flow: Validation and Limitations

WILLIAM J. SCHIRMER, M.D.,1 MICHAEL C. TOWNSEND, M.D.,1 JAMES M. SCHIRMER, B.A., WILLIAM W. HAMPTON, M.D., AND DONALD E. FRY, M.D.

Departments of Surgery, University Hospitals and Veteran’s Administration Medical Center, Case Western Reserve University, Cleveland, Ohio

Submitted for publication March 31, 1986

INTRODUCTION

Central to understanding the pathophysiology of organ dysfunction is awareness of organ perfusion. This flow–function relationship is well appreciated in diseases of the heart, brain, lungs, kidneys, viscera, and extremities and is no less important in the liver. The position of the liver interposed between the splanchnic mass and central circulation is crucial for many of its vital physiologic functions. Detoxification of drugs and endogenous products of metabolism, metabolism of exogenous carbohydrates, fats, and proteins, and the enterohepatic circulation rely on this strategic location and upon maintenance of portal blood flow.

Studies of portal hypertension and metabolism have been the traditional focus of hepatic blood flow determinations [7, 15, 16, 53, 73, 98]. The etiology of hepatic dysfunction in sepsis and other disease states is poorly understood with recent evidence suggesting that in sepsis, it may lie in inadequate liver perfusion [24, 33, 80]. The desire to have available a reliable technique for estimating hepatic blood flow for both investigational and clinical purposes is obvious. However, the relatively inaccessible dual blood supply from the hepatic artery and portal vein as well as the location of the hepatic veins deep in the hepatic parenchyma has proven relatively problematic in devising methods for determining hepatic blood flow (HBF).

TECHNIQUES FOR MEASURING HEPATIC BLOOD FLOW

The currently available techniques for estimating HBF can be divided into two general categories: (1) direct methods and (2) indirect methods [38, 42, 63]. Direct methods, which include timed hepatic vein output, plethysmography, and electronic or ultrasonic flow probes, are invasive requiring visualization and manipulation of the liver and/or its vessels and are therefore limited to animal investigation or selected surgical procedures. Indirect methods have varying degrees of invasiveness and thus a wider range of clinical and laboratory applications. Among these methods are the clearance techniques, inert gas washout and microsphere injection. Each technique has its inherent strengths and drawbacks and the method employed should be tailored to the purpose at hand.

For studies in our laboratory we were interested in utilizing a method for determining HBF in both small animals and man in order to study the effects of sepsis and other disease states on visceral blood flow. This required a quantitative, relatively noninvasive, and preferably simple and inexpensive technique. The clearance methods and inert gas washout are

1 Dr. Schirmer and Dr. Townsend are Dudley P. Allen research fellows in surgery, Case-Western Reserve University.
demonstrated in the liver making clearance active tissue. Anatomical shunts have not been blood flow as it measures flow to metabolically estimates "nutrient" or "effective" hepatic [62]. EHBF determination is the most useful [10,52]. Perfused scar, as in cirrhosis, will not tion. Clearance of flow-dependent substances are used for HBF estimation whereas sub-
stances removed with low efficiency relative to flow are useful for estimating hepatic function. Clearance of flow-dependent substances estimates "nutrient" or "effective" hepatic blood flow (EHBF) as opposed to total hepatic blood flow as it measures flow to metabolically active tissue. Anatomical shunts have not been demonstrated in the liver making clearance methodology particularly suited to the liver [10, 52]. Perfused scar, as in cirrhosis, will not actively clear the substrate, therefore that portion of the total HBF will not be measured [62]. EHBF determination is the most useful measure when attempting to correlate flow with function.

Fick, in 1872 [23], outlined a method for determining organ blood flow by clearance determinations, a principle most commonly applied to studies of renal blood flow and glomerular filtration rate using ara-aminohip purate and inulin, respectively, as test substances [8, 75]. The first requirement a substance must fulfill for use as a test substance in indirect clearance measurements as an estimate of EHBF is that the liver is the sole site for removal of the substrate, or if there are other routes, that these can be easily quantitated.

Clearance (Cl) is defined as the smallest volume of blood completely cleared of a substance per unit time. At steady-state blood levels the rate of infusion (I) equals the rate of removal (R). Clearance is then,

\[Cl = R/c_i = I/c_i, \quad (1) \]

where \(c_i = \) inflow concentration (at steady state). Liver flow (F) can be calculated provided the inflow and outflow concentration \((c_0) \) and removal rate are known:

\[F = R/(c_i - c_0). \quad (2) \]

Solving for R in Eqs. (1) and (2) and rearranging, flow and clearance can be related by

\[Cl = F[c_i - c_0]/c_i. \quad (3) \]

The quotient \([(c_i - c_0)/c_i] \) is known as the extraction fraction or extraction ratio (ER). Thus,

\[Cl = F \cdot ER \quad (4a) \]

or

\[F = Cl/ER \quad (4b) \]

The ER determines the degree to which clearance approximates flow. If 100% of a substance is cleared in a single pass through the liver the ER = 1.0 and \(F = Cl. \) When ER is less than 1.0, flow can be calculated after determining \(c_i \).

Bradley et al. [14] proposed the use of bromosulphalein (BSP) clearance as an estimate of EHBF in 1945. Both indocyanine green (ICG) and BSP are primarily removed by the liver with ICG having a slightly smaller extrahepatic uptake [30, 38, 92, 93, 97, 100]. BSP has been shown, also, to recirculate in the enterohepatic circulation making ICG the pre-

ferred substance be fulfills other impor relatively high ER measured [93]. Bo
tentially utilized 92, 93]. However high or constant v it can be assumed vein catheterization: \(c_i \) and ER. Cathete not without its invasiveness and some assumes that the cannulated vein is drainage of the er strated a variation centration in blood different hepatic v: If the catheter is hepatic vein it m clearance from the blood may be asp venous electricity. Also, w small, analytical e acceptably influen

NONCATHETE

Substances so ef
culation through the \(c_i = 0 \) and th estimate EHBF wit catheterization. In cen
tration is so low insensitive, attempt be more fraught w: ER. Galactose and two substances tha completely cleared liver and their clear catheterization, can blood flow [20, 21, 21].

Radiolabeled col tion are efficiently endothelial system liver, spleen, and slightly more comp flow to the rate of
ferred substance between the two [57, 92]. ICG fulfills other important criteria in that it has a relatively high ER, low toxicity, and is easily measured [93]. Both substances have been extensively utilized for EHBF estimations [30, 92, 93]. However, the ER is not sufficiently high or constant with either ICG or BSP that it can be assumed [30, 42, 92, 93]. Hepatic vein catheterization is mandatory to determine c_0 and ER. Catheterization of the hepatic veins is not without its faults [69]. Besides being invasive and somewhat technician dependent, it assumes that the blood collected from the cannulated vein is representative of the venous drainage of the entire liver. Bradley demonstrated a variation of up to 20% in BSP concentration in blood successively sampled from different hepatic veins in the same liver [13]. If the catheter is inserted too deeply into the hepatic vein, it may inhibit flow and affect clearance from that lobe. If not deep enough, blood may be aspirated retrograde from the vena cava. Also, when $c_t - c_c$ differences are small, analytical errors in the assay may unacceptably influence calculations [38, 93].

NONCATHETERIZATION METHODS

Substances so efficiently removed from circulation through the liver on a single pass that the $c_0 = 0$ and thus ER = 1.0 can be used to estimate EHBF without resort to hepatic vein catheterization. Indeed, if hepatic vein concentration is so low that the available assay is insensitive, attempts to determine an ER may be more fraught with error than assuming an ER. Galactose and radiolabeled colloids are two substances that are completely or nearly completely cleared on single pass through the liver and their clearance, without hepatic vein catheterization, can be used to estimate liver blood flow [20, 21, 35, 36, 47, 87, 91, 92, 95].

Radiolabeled colloids given by bolus injection are efficiently taken up by the reticuloendothelial system (RES) primarily in the liver, spleen, and bone marrow [21, 47]. A slightly more complicated expression relates flow to the rate of change of concentration after bolus injection as opposed to steady-state determinations, but the principle is the same. The disadvantages of using radiolabeled colloid clearance to estimate HBF include (1) ER that may not always be greater than 0.90 owing to variations in particulate size [40]; (2) difficulty quantitating extrahepatic uptake [91]; (3) excessive radiation exposure especially locally to the RES cells [42]; and (4) requirement for expensive isotopic counting equipment.

For our purposes, galactose clearance at low concentrations (GCLC) has proven to be as near ideal a method for estimating EHBF as is available. To appreciate this a thorough understanding of the kinetics of galactose elimination is required. The kinetic analysis defines the limits within which one must operate for GCLC to be valid in both health and disease.

GALACTOSE ELIMINATION: LIVER AS SOLE SITE

Galactose is a simple sugar, a monosaccharide along with glucose of the disaccharide, sucrose. Enzymatic conversion of galactose to glucose proceeds in four steps with the first,

Galactose + ATP \rightarrow Galactokinase

conversion of galactose and ATP to galactose 1-phosphate and ADP in the presence of galactokinase being rate limiting [27, 28, 50]. Galactokinase has been demonstrated in brain, kidney, gut, RBCs, and muscle but in far less concentration and with less activity than in the liver [11, 18]. RBC galactokinase activity is second to the liver with in vitro studies suggesting that galactose elimination by this route is on the order of 1% of the total elimination [34].

The primary site of extrahepatic galactose elimination is the urine [22, 84, 87]. Tygstrup demonstrated that urinary galactose elimination increased linearly with concentration [84]. As blood concentration increased the percentage of galactose elimination accounted for in the urine progressively increased because the liver has a maximal elimination capacity while the kidney does not. Studies on the uti-
lization of galactose after complete hepatectomy demonstrates that urinary galactose elimination accounted for the majority of galactose elimination with the sum of all other pathways on the order of 50% of urinary elimination [12]. In the concentration range required for EHBF determinations in the rat, urinary elimination is <1% of the total galactose elimination [70]. Therefore the sum of all extrahepatic sites for galactose elimination in the appropriate concentration range is roughly 2% fulfilling Fick’s first criterion for the use of galactose clearance to determine EHBF.

Bauer, in 1906, suggested the use of galactose elimination as a test of the glycogetic function of the liver [6]. Numerous investigators described what can generally be considered the “galactose elimination capacity” (GEC) of the liver [5, 9, 17, 22, 41, 78, 79, 82, 83, 88, 96]. After a very large bolus injection of galactose the rate of change of galactose concentration in blood was determined by serial blood sampling. The concentrations of galactose achieved in this way were sufficient to saturate the hepatic elimination capacity, and the rate of change in concentration on time was constant. Hepatic vein catheterization at high concentrations revealed a constant hepatic arterial–venous concentration difference [87, 88]. The GEC became an accepted test of liver function and its value taken to reflect the functional hepatic mass [17, 82, 83, 88, 96]. Normal values were established and abnormal values were used as diagnostic and prognostic indicators [5, 9, 41, 78, 79].

When it was appreciated that the liver was the sole site for galactose removal, galactose was proposed as a test substance for EHBF estimation by the Fick principle using hepatic vein catheterization in the fashion employed with ICG and BSP [32, 87].

A more thorough analysis of the nature of galactose elimination as the concentration fell revealed that at lower concentrations the rate of decline in concentration was not linear, but exponential [88]. Hepatic arterial–venous concentration differences progressively narrowed until at concentrations less than 200 mcg/ml the hepatic vein concentration was virtually zero. Realizing that hepatic vein galactose concentrations of zero meant complete extraction across the liver, Waldenstein and Arcilla, in 1956, recommended examination of this portion of the curve after bolus injection to estimate EHBF without the need for hepatic vein catheterization because the ER could be assumed to be 1.0 [95].

There are many disadvantages to studying the elimination kinetics of a substance after bolus injection [29, 32, 88, 95]. The blood galactose concentration depends on the amount administered, blood and tissue space volumes, and rate of equilibration between the two, and on the sum of all elimination pathways. To assume that the fall in concentration over time is due entirely to hepatic elimination it is necessary to assume that the volume of distribution is constant over a wide range of concentrations and that the equilibrium between the plasma and other compartments is rapid. Continuous infusion to steady-state concentrations (i.e., dc/dt = 0) eliminates the necessity for volume of distribution determination because at steady state the removal rate equals the infusion rate [29, 94]. Volume of distribution differences produced by disease is negated in the calculations [38, 70].

Using the continuous infusion method and assuming the ER = 1.0 (as proposed by Waldenstein et al. [95]), we see by Eqs. (1)-(4) that EHBF can be determined by measuring low, steady-state galactose concentration (cₘ) at a known infusion rate (I) by

\[\text{EHBF} = I / cₘ \] \(\text{(6)} \)

Although theoretically sound, the practical application of this method awaited development of a galactose assay sufficiently sensitive in the concentration range required. Not until 1980 when Henderson and Fales developed a fluorometric method sensitive to galactose concentrations down to 10 mcg/ml [34] could GCLC as an estimate of EHBF without hepatic vein catheterization be confidently applied. Henderson et al. confirmed the near complete extraction of galactose across the liver (ER = 0.94) in subjects without hepatic disease by performing hepatic vein catheterization [35].

To apply GCLC as the face of disease an important that one well of the test. It is possible could alter the metabolism of such a test even at low concentration dependent. Assuming fact, it was 0.80, we estimation of flow, T on galactose elimination. Keiding and co-workers [99]: The “sinusoidal” developed and empirically used as a sound theoretical approach for estimating the extraction of galactose after complete hepatectomy [44, 45] by galactose clearance at high concentrations of galactose (GE) [99]. The “sinusoidal” approach for estimating flow, T, on galactose elimination by Keiding and co-workers [99]. The “sinusoidal” approach for estimating flow, T, on galactose elimination by Keiding and co-workers [99].
To apply GCLC as an estimate of EHBF in the face of disease or hepatic dysfunction it is important that one work within the limitations of the test. It is possible that a disease process could alter the metabolism of galactose in such a way or to such a degree that its clearance, even at low concentrations, was no longer flow dependent. Assuming an ER of 1.0 when, in fact, it was 0.80, would lead to a 20% underestimation of flow. The most extensive work on galactose elimination kinetics was done by Keiding and co-workers [43-45, 48, 50, 85, 99]. The "sinusoidal perfusion model" they developed and empirically validated provides a sound theoretical justification for using galactose clearance at low concentrations to estimate EHBF [44, 45, 48, 50, 99]. It also provides a means of defining the limitations of this method in health and disease based on awareness of the galactose elimination constants, V_{max} (or GEC) and K_m (the half-saturation concentration).

GALACTOSE ELIMINATION KINETICS

A general equation for hepatic galactose elimination is

$$GE = \frac{I}{(dc/dt)DW - UE},$$

where $GE =$ hepatic galactose elimination, $I =$ infusion rate, $dc/dt =$ rate of change of galactose concentration, $D =$ volume of distribution, $W =$ animal weight, and $UE =$ urinary galactose elimination, which takes into account a number of the previously discussed variables. Varying the infusion rate to achieve a range of blood concentrations allows plotting of GE as a function of concentration. Work in our laboratory as well as numerous others reveals that hepatic galactose elimination follows Michaelis–Menten saturation kinetics [43, 50, 70]. Its hallmark is an early, concentration-dependent (first-order) elimination phase followed by a definable clearance maximum (V_{max} or GEC) at higher concentrations (zero-order phase).

Michaelis–Menten kinetics are classically used to describe enzyme reactions in vitro and have been "borrowed" from this arena to explain many of the physiologic phenomena observed in vivo [60]. In enzymology the constants, V_{max} and K_m, under defined reaction conditions are the "fingerprint" of that enzyme–substrate reaction. The K_m is actually the dissociation constant of enzyme and substrate. Suppose, for example, the simplest enzyme–substrate reaction

$$E + S \overset{k_1}{\underset{k_2}{\rightleftharpoons}} ES \overset{k_3}{\rightarrow} E + P$$

where $E =$ free enzyme, $S =$ substrate, $ES =$ enzyme–substrate complex, $P =$ product, and $k =$ the rate constant in the direction of the arrow. Then,

$$K_m = \frac{(k_1 + k_2)}{k_3} \left[E \right] \left[S \right] / [ES].$$

The K_m has units of concentration. The Michaelis–Menten equation,

$$v = \frac{(V_{\text{max}} \cdot c)}{(K_m + c)},$$

where $v =$ reaction velocity and $c =$ substrate concentration, reveals that when $K_m = c$, then $v = \frac{1}{2} V_{\text{max}}$. Thus K_m is termed the half-saturation concentration. For each enzyme–substrate system K_m has a characteristic value that is independent of the quantity of enzyme but is dependent on the reaction conditions such as pH, temperature, and reaction milieu. Alterations in its value imply a disturbed enzyme–substrate reaction.

Rearranging Eq. (10), we obtain,

$$\frac{1}{v} = \overline{K_m} \frac{1}{V_{\text{max}}} \cdot \frac{(1/c)}{1 + \frac{1}{V_{\text{max}}}},$$

which is the Lineweaver–Burk equation [37, 56]. It describes a line when $1/v$ is plotted against $1/c$ with a y intercept of $1/V_{\text{max}}$ and slope of K_m/V_{max}. Plotting of $1/v$ vs $1/c$ allows determination of these constants by extrapolation of $c=\infty$.

When applied to in vivo elimination processes the constants are usually referred to as "apparent" K_m and V_{max} as the in vivo values may not necessarily reflect the in vitro values. In vivo reactions have membrane bound proteins, metabolite production, several rate-limiting steps, varying metabolic conditions, and directional sinusoidal perfusion, to name a few of the conditions, that make it distinctly dif-
different than controlled enzyme reactions in vitro [45].

In enzymology V_{max} has standardized units relative to a known quantity of enzyme. Its value is so characteristic that the purity of an enzyme preparation can be tested by how close it approximates the ideal value. When extended to explain complex in vivo reaction processes the denominator must be clearly defined. We will define units of velocity as amount of galactose removed per unit time per 100 g of body weight (as opposed to rate per individual man [82, 96] or rate per g of liver weight [43, 50] as has been used elsewhere).

Figure 1 displays the GE vs concentration of 22 rats after determination of galactose concentrations, dc/dt, D, and UE at known infusion rates. Figure 2 plots $1/GE$ vs $1/c$ from the same data points with linear regression to determine the elimination constants. Superimposed on Fig. 1 is the line generated from the elimination constants by Eq. (10). Having determined that galactose elimination obeys Michaelis-Menten saturation kinetics we can now define the limits within which galactose clearance is flow dependent through awareness of V_{max} and K_m.

SINUSOIDAL PERFUSION MODEL

The basic Michaelis-Menten equation (Eq. (10)) is independent of flow and is therefore limited when applied to in vivo processes. It is obvious by Eqs. (2) and (3) that both c_j and c_0 are flow dependent. The hepatocytes are not bathed in a solution with a constant concentration of substrate as is the case in test tubes. Blood flows unidirectionally through sinusoids of a definable length and diameter at a prescribed rate [4, 26, 27]. The inflow concentration of galactose exceeds the outflow concentration with a gradient through the liver. The hepatocytes in the proximal portion of the sinusoid see a higher galactose concentration than those downstream. The "sinusoidal perfusion model" takes into account this falling concentration along the sinusoids based on the Michaelis-Menten elimination nature at each cross section of the sinusoid [44, 45, 99]. The assumptions of the model are that blood flows unidirectionally through sinusoidal units, each functionally identical, with instantaneous diffusion equilibrium at each transverse section and that the rate-limiting step in removal is irreversible obeying Michaelis-Menten kinetics [45]. The "new" Michaelis-Menten equation which applies to clearance determinations in hepatology is

$$v = (V_{\text{max}} \cdot \hat{c})/(K_m + \hat{c}),$$

where \hat{c} is the logarithmic average concentration,

$$\hat{c} = (c_i - c_o)/\ln(c_i/c_o).$$

Considering the fall in concentration along the sinusoids becomes especially important when determining K_m and V_{max} are both flow dependent. The K_m in Fig. 1 from values of c_j flow independent, c_0, elimination constants, outflow concentration (i.e. nized liver tissue average concentration) representative for the elimination constant with c_0 decreases. The average c_j produces no average.

The "apparent" mean in the example sinusoidal perfusion [70] (assuming clearance at this close agreement with [18, 27, 43, 48, 50]

VALIDATION ESTIM.

Another way of tains all observabl $v = FK$.

Fig. 3. Kinetic constants

Only \hat{c} is flow indepen...
when determining the dissociation constants. K_m and V_{max} are by definition independent of flow. The K_m in Figs. 1 and 2 were determined from values of c_0 and cannot be considered flow independent. Other studies report elimination constants based on inflow concentration, outflow concentration (i.e., $(c_i + c_e)/2$), homogenized liver tissue, and finally logarithmic average concentration. Figure 3 shows representative Lineweaver-Burk plots when the elimination constants are determined by c_i, c_0, or c_e. The V_{max} is unaffected by the value used (because when $c_i \gg K_m$, $c_i \approx c_0 \approx c_e$) but the K_m differs greatly. Keiding demonstrated empirically that c_e was independent of flow. As flow decreases, c_i increases. However, because the transit time is increased in the sinusoid, there is more time for clearance, and c_0 decreases. The increase in c_i and decrease in c_0 produce no change in their logarithmic average.

The "apparent" K_m for galactose elimination in the example cited previously, by the sinusoidal perfusion model, is 30.1 mcg/ml (assuming conservatively a 90% first-pass clearance at this concentration), which is in close agreement with values reported by others.

From the Fick principle we know that

$$v = F(c_i - c_0).$$

Solving for c_0 and rearranging we have

$$v = F[1 - e^{-(V_{\text{max}} - v)/FK_m}],$$

which is the general clearance equation valid for all values of c_i. This relationship is no more than the familiar clearance relationship expressed in Eq. (4a) where $v/c_i = \text{clearance}$, $F = \text{flow}$, and $(1 - e^{-(V_{\text{max}} - v)/FK_m}) = \text{extraction ratio}$. The extraction ratio determines the degree to which clearance approximates flow.

Figure 4 is a graph of extraction ratio as a function of $(V_{\text{max}} - v)/FK_m$. Values of $(V_{\text{max}} - v)/FK_m > 2.3$ translate into ERs greater than 0.90.

This model allows prediction of the ER based on an awareness of the elimination constants. Certain restrictions of the parameters permits classification of substances into categories based on whether liver blood flow or liver function is the primary determinant of clearance. If we require that $c_i < K_m$, then $v < V_{\text{max}}$ (i.e., elimination proceeding well below the maximal rate), and Eq. (16) reduces to

$$v/c_i = F(1 - e^{-(V_{\text{max}} - v)/FK_m}).$$

With $V_{\text{max}}/FK_m > 2.3$, Eq. (17) approximates

$$v/c_i = F,$$

which states that clearance = flow. Clearance of substances with values of $V_{\text{max}}/FK_m > 2.3$ can be classified as flow dependent. It is these substances that may be suitable for application to clearance determinations as estimates of flow. At the other extreme, when V_{max}/FK_m is less than 0.05, Eq. (18) reduces to

$$v/c_i = V_{\text{max}}/K_m,$$

which, if rearranged, is the Michaelis-Menten equation (Eq. (10)) when $c_i < K_m$.

When V_{max}/FK_m is small, clearance is not dependent on flow, rather clearance is dependent on function (V_{max} and K_m are flow independent values). Another way of stating this is when the biochemical efficiency for clearance of a substrate is high relative to
flow, the ER will be high and perturbations in flow will be accompanied by proportionate changes in clearance. When the biochemical efficiency is low relative to flow, functional disturbances (i.e., \(V_{\text{max}} \)) will affect clearance rate. The schematic in Fig. 5 demonstrates these two extremes [99]. When substances have values \(0.05 < V_{\text{max}}/FKm < 2.3 \), clearance depends on varying degrees of flow and function.

Table 1 shows values of \(V_{\text{max}}/FKm \) for a variety of substances including galactose in the example cited earlier (from [43, 45, 47, 70]). Galactose can be seen to have values of \(V_{\text{max}}/FKm > 2.3 \) for the in vivo preparations. The isolated-perfused liver preps tend to have lower values of \(V_{\text{max}}/FKm \) as a result of a reduced clearance. In the example presented, the \(V_{\text{max}}/FKm = 4.00 \) for galactose elimination in the rat [70].

As an example used to validate: an estimate of E! the galactose elimination rat model [70]. T controls while needed galactose of \(V_{\text{max}}/FKm = 3.8 \) traction ratio ren: concentrations (i.e., flow) is still flow dependent despite a modest reduction in \(V_{\text{max}} \) without a change in kinase, to less than 0.90.

The \(V_{\text{max}} \) for galactose is higher in humans with the \(K_m \) being \(V_{\text{max}}/FKm \) in the range tolerable within the range of sepsis is a valid.

The \(V_{\text{max}} \) for galactose in humans is a valid.

Table 1 gives values of \(V_{\text{max}}/FKm \) for a variety of substances including galactose in the example cited earlier (from [43, 45, 47, 70]). Table 1 gives values of \(V_{\text{max}}/FKm \) for a variety of substances including galactose in the example cited earlier (from [43, 45, 47, 70]).

Table 1

<table>
<thead>
<tr>
<th>Substance</th>
<th>Species, procedure</th>
<th>(V_{\text{max}}/FKm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow-dependent clearance, i.e., (V_{\text{max}}/FKm > 2.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
<td>Human liver, in situ</td>
<td>10 (5.5-13.3)</td>
</tr>
<tr>
<td>Propranolol</td>
<td>Rat liver, perfused</td>
<td>>10</td>
</tr>
<tr>
<td>Galactose</td>
<td>Human liver, in situ</td>
<td>3.5-12</td>
</tr>
<tr>
<td>Lidocaine</td>
<td>Rat liver, perfused</td>
<td>5</td>
</tr>
<tr>
<td>Galactose</td>
<td>Rat liver, in situ</td>
<td>4.0</td>
</tr>
<tr>
<td>Galactose</td>
<td>Rat liver, in situ</td>
<td>2-4</td>
</tr>
<tr>
<td>Intermediate clearance, i.e., (0.06 < V_{\text{max}}/FKm < 2.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galactose</td>
<td>Pig liver, perfused</td>
<td>2.2</td>
</tr>
<tr>
<td>Ethanol</td>
<td>Pig liver, perfused</td>
<td>1.9</td>
</tr>
<tr>
<td>ICG</td>
<td>Human liver, in situ</td>
<td>1.0</td>
</tr>
<tr>
<td>BSP</td>
<td>Human liver, in situ</td>
<td>1.0</td>
</tr>
<tr>
<td>ICG</td>
<td>Cat liver, in situ</td>
<td>0.3</td>
</tr>
<tr>
<td>Antipyrine</td>
<td>Monkey liver, in situ</td>
<td>0.3</td>
</tr>
<tr>
<td>Function (enzyme)-dependent clearance, i.e., (V_{\text{max}}/FKm < 0.06)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antipyrine</td>
<td>Pig liver, perfused</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Note: Classification of substances as flow-, intermediate-,
or function-dependent based on relative value of kinetic constants to flow. (Adapted from Keiding et al. [43, 45, 47] and [70]).

Fig. 5 General clearance equation. Clearance of substances with \(V_{\text{max}}/FKm > 2.3 \) is primarily flow-dependent. Clearance of substances with \(V_{\text{max}}/FKm < 0.06 \) is function (enzyme) dependent. When \(0.06 < V_{\text{max}}/FKm < 2.3 \), clearance is intermediate. (Adapted from Winkler et al. [99]).
As an example of how this model can be used to validate and set limits for GCLC as an estimate of EHBF in disease, we studied the galactose elimination kinetics in a septic rat model [70]. The V_{max} fell 25% relative to controls while K_m was unaltered. The decreased galactose clearance produced a value of $V_{\text{max}}/K_m = 3.82$ which meant that the extraction ratio remained quite high at low concentrations (i.e., low values of v). This provides a good example of how galactose elimination is still flow dependent at low concentrations despite a modest functional impairment. A reduction in V_{max} of 40% relative to control without a change in flow or K_m would be required to reduced the ER, at low concentrations, to less than 0.90. GCLC in this example of sepsis is a valid estimate of EHBF.

The V_{max} for galactose elimination is much higher in humans than in rats [47, 82, 96], with the K_m being similar [47]. Values for V_{max}/K_m in humans are therefore higher than in rats. The lower range for in situ human liver presented in Table 1 represents the extreme of liver dysfunction in cirrhosis as estimated from reported values of GEC [47]. What this means is that higher values of v relative to V_{max} can be tolerated in humans, still retaining an ER > 0.90. This expands the concentration range within which GCLC estimates EHBF in humans compared to the relatively narrow range tolerable with rats [70].

Table 1 gives values for the V_{max}/K_m of ICG. Even in the most ideal situation where v is infinitesimally small, ICG clearance is only approximately 70% dependent on flow. Any reduction in V_{max} or increase in v or K_m will lessen the degree to which ICG clearance reflects EHBF. That is not to say that ICG cannot be used for EHBF determination. As long as hepatic vein catheterization is performed to determine c_o, flow can be calculated by the Fick principle and Eq. (2). However doubt must be shed on the interpretation of results obtained from determination of the ICG clearance half-life, a commonly employed method for estimating EHBF [54, 65]. Paumgartner et al. [65] showed that ICG half-life at low doses of ICG was flow dependent and at high doses was function dependent. Although this may more or less be the case, it is not nearly as sensitive as is required to make statements about the magnitude of flow changes. In their own study they reported the effects of disease on both V_{max} and K_m that would make ICG decay or half-life almost completely function dependent even at the smallest doses.

Little mention has been made of how flow changes alone would affect clearance. An increase in F would reduce the value of V_{max}/K_m and reduce the ER. This is a general principle of clearance which recognizes that the ER varies inversely with flow. As transit time increases (i.e., decreased flow rate) a higher percentage of substrate is eliminated in a single pass. Decreased transit time results in less efficient elimination. Clearance, however, will always change in the same direction as flow (assuming constant V_{max} and K_m) with the limiting elimination rate equaling V_{max}/K_m (Fig. 6). Because increased flow reduces ER, one must work at smaller values of v relative to V_{max} to satisfy the requirements of an ER > 0.90, otherwise flow will be underestimated.

OTHER CONSIDERATIONS IN GALACTOSE CLEARANCE

On theoretical grounds GCLC is an extremely good estimate of hepatic blood flow without hepatic vein catheterization. We require steady-state galactose concentrations between 20 and 60 mcg/ml in the rat due to loss of sensitivity of the assay below 20 mcg/ml [47, 82, 96].

![Graph](image-url)

Graph: Clearance and extraction ratio vs. flow. Extraction ratio decreases as flow increases. Clearance increases with flow to a maximum of V_{max}/K_m.

According to the table, $V_{\text{max}}/K_m > 2.3$ for $K_m < 2.3$ at $v > 10$ and $5.5 - 13.3$ at $v > 10$.

Table 1: Values for V_{max}/K_m in humans and rats.

<table>
<thead>
<tr>
<th>V_{max}/K_m</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_m</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2.2</td>
</tr>
<tr>
<td>3.5 - 12</td>
<td>1.9</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
</tr>
<tr>
<td>4.0</td>
<td>0.3</td>
</tr>
<tr>
<td>7.4</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Intermediate value of kinetic g et al. [43, 45, 46, 70].
Galactose has characteristics that lend it well to routine use. Galactose is a normal constituent of all mammalian diets and is safe administered orally or parenterally [19, 72, 77] except in those rare individuals with hereditary galactosemia [71]. There have been no reported complications with its use in humans, unlike with ICG and BSP [78, 79]. Also hepatic vein catheterization and its potential complications are avoided [69].

Many processes in the liver have been shown to be inducible by endogenous substances or drug therapy. Phenobarbital has been shown to increase BSP transport [25], decrease ICG half-life [25, 59], and increase antipyrene clearance [90]. Galactose metabolism, on the other hand, has clearly been demonstrated not to be affected by phenobarbital induction [46]. Adult rats fed a 40% galactose diet for 5 days did not show an increase in GEC although 20 days on the diet resulted in a 20% increase in V_{max}, suggesting that adaptive mechanisms are slow [18]. This lack of inducibility and relatively constant V_{max} is desirable in clearance methodology as a fluctuating V_{max}/K_m would certainly complicate clearance interpretations.

Galactose is involved in carbohydrate metabolism and the effects of perturbations in this system on galactose metabolism have been studied. Insulin has been shown not to affect galactose elimination rate [5, 67]. A large galactose bolus produces a transient rise in glucose levels, but a large glucose load does not affect galactose elimination rate [32].

Galactose elimination is an energy-dependent process utilizing ATP in the rate-limiting step [27, 28, 50]. The reaction of galactokinase with ATP at fixed galactose concentrations obeys Michaelis-Menten kinetics with a $K_m = 0.12-0.20 \text{ mM}$ [2, 3, 81]. The approximate ATP concentration in rat liver studied in our lab is 5.3 mM in sham-operated animals and 3.3 mM in the livers of septic rats [80] (estimated cytosol concentration from whole liver freeze clamped values 10 hr after cecal ligation and puncture). Therefore, the ATP concentration in this severe stress state is more than an order of magnitude greater than the K_m of galactokinase-ATP. It would take a reduction in ATP concentration below compatibility with cell life to desaturate ATP from galactokinase making it unlikely that a reduced hepatic ATP alone will affect galactose clearance in clinical situations.

Elevated ADP [2] and elevated NADH/NAD ratios [39] in vitro have an inhibitory effect on conversion of galactose to galactose 1-P, however, these effects have not been quantitated in vivo. The septic rat model discussed earlier has a decreased hepatic ATP, elevated ADP, and chemical evidence of a more reduced state [80]. The V_{max} in that case was down 25% but the K_m was unaffected [70]. The etiology of the reduction in V_{max} is not clear; however, the V_{max}/K_m remained high validating GCLC as an estimate of flow despite this severe perturbation in the bioenergy status of the liver.

Ethanol is the only substance shown clinically in man to alter galactose elimination kinetics [39, 49, 86]. It acts as an uncompetitive inhibitor producing a reduction in both V_{max} and K_m [49]. Concomitant ethanol ingestion may affect the validity of galactose clearance as a flow estimate. Table 1 lists propranolol, lidocaine, and ethanol as other substances whose clearance is flow dependent and these substances are cleared primarily by the liver [7, 15, 51, 73]. However, unlike galactose, these substances are known to affect systemic and/or regional blood flow or pro effects rendering as test substances flow [54].
osse load does not rate [32].

an energy-depen-
dent rate-limiting
v of galactokinase
se concentrations
etics with a K_m.
The approximate
ver studied in OUT
se concentrations
ver, remained high
in V_{max} in that case
ell affect galactose
levated NADH/
ve an inhibitory
tion of the kinetic constants—this is partic-
arily useful when the size of the animal pre-
cludes hepatic vein catheterization. A mod-
erate functional impairment can be tolerated
the liver's efficiency at removing galactose. The
afety and simplicity of the procedure make it
uitable for repeated application to either hu-
ans or animals. Development of the flu-
orometric assay for galactose has made det-
ination of low galactose concentrations pos-
able. Modification of commonly available
aboratory analyzers has made galactose assay
whole blood possible on a routine basis ex-

mportant that the test retaining its validity due to the

REFERENCES

1. Andreasen, P. B., Raek, L., Statland, B. E., and
Tystrup, N. Clearance of antipyrine dependence of
1974.

2. Ballard, F. J. Kinetic studies with liver galactokinase.

3. Ballard, F. J. Determination and properties of galac-

Enzymatic elimination of substrates flowing through

A new galactose test for differentiation of obstructive
from parenchymatous jaundice. Amer. J. Digest. Dis.
8: 432, 1941.

6. Bauer, R. Weitere untersuchungen uber alimentare

7. Benowitz, N., Forsyth, R. P., Melmon, K. L., and
Rowland, M. Lidocaine disposition kinetics in monkey

8. Berger, E. Y., Farber, S. T., and Earle, D. P. Com-
parison of the constant infusion and urine collection
techniques for the measurement of renal function.

Rohmsdahl, M., and Dougherty, N. The blood ga-
lactose disappearance curve as a test of liver function.

10. Bloch, E. H. The disappearance of galactose from
and the functional unit of the liver as determined by

11. Blume, K. G., and Beutler, E. Purification and pro-
perties of galactokinase from human red blood cells.

12. Bollman, J. L., Mann, F. C., and Power, M. H. The
utilization of galactose following complete removal

13. Bradley, S. E. Liver Injury. Josiah Macy, Jr., Foun-

14. Bradley, S. E., Ingelfinger, F. J., Bradley, G. P., and
Curry, J. J. The estimation of hepatic blood flow in

implications of the effects of blood flow on
elimination from the perfused rat liver. Drug Metab.

16. Burchiel, R. R., Moreno, A. H., Panke, W. F., and
Nealon, T. F. Hepatic artery flow improvement after

appearance of galactose from the bloodstream. Calculation
of a galactose removal constant and its application as
a test for liver function. J. Clin. Invest 25: 768,
1946.

18. Cuatrecasas, P., and Segal, S. Mammalian galacto-

19. Deuel, H. J. The intermediary metabolism of fructose

20. Dobson, E. L., and Jones, H. B. The behavior of
intravenously injected particulate material. Acta

Johnston, M. E. The measurement of liver circulation
by means of the colloidal disappearance rate. Cir-
clulation 7: 690, 1953.

22. Dominguez, R., and Pomerene, E. Kinetics of the
disappearance of galactose from the plasma after a
rapid intravenous injection. Amer. J. Physiol. 141:
368, 1944.

23. Fick, A. Uber die messung des blutquantums in
den herzventikeln sitzungsb furo Ph.ys. Med. Ges-
ellsch Wurzb. 1870d: 16, 1872.

24. Fick, A. Ueber die messung des blutquantums in
den herzventikeln sitzungsb furo Ph.ys. Med. Ges-
ellsch Wurzb. 1870d: 16, 1872.

25. Fick, A. Ueber die messung des blutquantums in
den herzventikeln sitzungsb furo Ph.ys. Med. Ges-
ellsch Wurzb. 1870d: 16, 1872.

26. Fick, A. Ueber die messung des blutquantums in
den herzventikeln sitzungsb furo Ph.ys. Med. Ges-
ellsch Wurzb. 1870d: 16, 1872.

27. Fick, A. Ueber die messung des blutquantums in
den herzventikeln sitzungsb furo Ph.ys. Med. Ges-
ellsch Wurzb. 1870d: 16, 1872.

1. Schirmer ET AL. HEPATIC BLOOD FLOW

100. Wirts, C. W., and Bradford, B. K. The biliary excretion of bromosulphalein as a test of liver function in a group of patients following hepatitis or serum jaundice. J. Clin. Invest. 27: 600, 1948.

The Journal of Surgical Research: Vol. 41, No. 5, November 1986

Preparation of Manuscripts

An original and three manuscript forms are required:

Title Page: The title should be numbered to facilitate rapid identification of the manuscript.

Abstract: Include an approximate 100 word summary of the work.

Text: The text should be concise, clear, and specific. When reporting the results of experiments, use standard units of measurement. Avoid the use of jargon or technical terminology that is not necessary.

References: Type or type-written references should be included. Each reference should be cited in the text. The list of references should be alphabetized by author's last name.

The Publisher will not accept manuscripts submitted elsewhere, and the submitting author should be designated a letter indicating that the manuscript has been submitted elsewhere. The letter should accompany the manuscript. The Publisher will not publish anything that has been published elsewhere, whether as a whole or in part.

Preparation of Manuscripts:

The Journal of Surgical Research - California 92101.